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Abstract

This study presents a detailed procedure for the implementation of a discrete singular convolution (DSC) approach to

the free vibration analysis of composite plates based on classical laminated plate theory (CLPT). The approach performs a

numerical solution of differential equation of motion by using a grid discretization based on distribution theory and

wavelets. In the paper, firstly, computational algorithm of the DSC method is presented. Then, the accuracy of the

computer code developed is verified by comparing DSC solutions with the exact results of simply supported isotropic thin

beams, fully simply supported one-layer isotropic and specially orthotropic plates, and also some symmetrically laminated

thin composite plates orientated to become specially orthotropic. Besides, DSC predictions for laminated composite plates

with different boundary conditions and ply numbers, for which there is no analytical solution, are compared with those of

several distinguished works available in the literature. It is noteworthy that DSC results completely match with the exact

solutions and are in perfect agreement with those of compared studies.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composites are increasingly used in various mechanical structures and industrial applications
such as aircrafts, automobiles, marines, buildings and several house-hold appliances due to their, in particular,
higher stiffness and higher strength-to-weight ratio compared to isotropic or wooden materials. In vibration
engineering, modal parameters of a structure are primary design information, because they directly affect the
forced response characteristics. Conventional methods for vibration analysis are generally based on either
theoretical solutions or experimental studies. However, in general, practical problems are either too difficult or
impossible to deal with by analytical methods and experiments are rather expensive. Therefore, numerical
simulations and algorithms are of significant role in modern vibration analysis. The finite element method
(FEM) has been commonly used in the vibration analysis of composite plates. Significant studies up to the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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1980s on the vibration analysis of laminated composite plates by the finite element method were reviewed by
Reddy [1]. Reddy and Averill [2] also presented refined two-dimensional theories and computational models of
laminated composite plates and reviewed the computational aspects of finite element models of these refined
theories. Ritz, p-Ritz and Rayleigh–Ritz approaches are successfully employed in the vibration analysis of
laminated plates [3–10]. The differential quadrature technique introduced by Bellman et al. [11] has been
applied in the vibration analysis of both isotropic and composite plates [12–16]. Besides, several alternative
techniques have been increasingly used [17–21].

In the last decade, a novel approach originally introduced by Wei [22,23] and called ‘‘discrete singular
convolution (DSC)’’ analysis has presented a powerful technique for the numerical solution of differential
equations. The solution technique of DSC is based on the theory of distribution and wavelets. The technique
includes both the flexibility of local methods and the accuracy of global methods. The DSC method has been
reliably used in various vibration analyses: Wei [24–26] and Wei et al. [27–29] showed that the DSC method
can be effectively used in the vibration analysis of isotropic beams and plates with several uniform and non-
uniform boundary conditions. Wei et al. [30] and Zhao et al. [31] proved the accuracy of the DSC method in
the prediction of high natural frequencies of beams and plates. At present, these high-frequency predictions
are unique results numerically obtained. Furthermore, Ng et al. [32] clearly indicated that the DSC yields more
accurate predictions compared to the differential quadrature method for higher-order eigenfrequencies.

In the literature, the implementation procedure of DSC is presented rather implicitly. In this paper, the basic
algorithm of the DSC approach and boundary condition implementation are clearly introduced. A computer
code has been developed on the basis of the DSC for the free vibration analysis of composite plates based on
classical laminated plate theory (CLPT). The accuracy of the code is verified by comparing the DSC free
vibration results with the exact ones for simply supported isotropic thin beams, fully simply supported one-
layer isotropic and specially orthotropic plates, and some symmetrically laminated thin composite plates
orientated to become specially orthotropic. In addition, free vibrations of several laminated thin composite
plates, which have no analytical solutions, are predicted by DSC for different boundary conditions and ply
numbers. The results are compared with those of various published studies utilizing different methods.

2. Bending vibrations of symmetrically laminated plates based on CLPT

Time-independent differential equation of harmonic bending vibration for a symmetrically laminated thin
composite plate with natural frequency o having side lengths a and b, total thickness h, average mass density r0 and
Poisson rate u can be written in Cartesian co-ordinates (x, y) in terms of flexural displacement w as follows [33]:

D11
q4wðx; yÞ

qx4
þ 4D16

q4wðx; yÞ

qx3qy
þ 2ðD12 þ 2D66Þ

q4wðx; yÞ

qx2qy2

þ 4D26
q4wðx; yÞ

qxqy3
þD22

q4wðx; yÞ
qy4

� r0ho2wðx; yÞ ¼ 0. (1)

Here, D11, D12, D22 and D66 are the bending rigidities in the principle material directions whereas D16 and D26

are the bend-twist coupling stiffnesses. For fully simply supported (SSSS) and fully clamped (CCCC) edges,
the following boundary conditions are applicable:

For SSSS : at x ¼ 0; a : w ¼ 0; �D11
q2w
qx2
� 2D16

q2w

qxqy
�D12

q2w

qy2
¼ 0, (2a)

at y ¼ 0; b : w ¼ 0; �D12
q2w

qx2
� 2D26

q2w
qxqy

�D22
q2w
qy2
¼ 0. (2b)

For CCCC : at x ¼ 0; a : w ¼ 0;
qw

qx
¼ 0, (3a)

at y ¼ 0; b : w ¼ 0;
qw

qy
¼ 0. (3b)



ARTICLE IN PRESS
A. Sec-gin, A.S. Sarıgül / Journal of Sound and Vibration 315 (2008) 197–211 199
Introducing new non-dimensional parameters: X ¼ x/a, Y ¼ y/b, W ¼ w/a, l ¼ a/b, Dg ¼ (D11/D22),
Df ¼ (D12+2D66), Da ¼ (D16/D22), Db ¼ (D26/D22), Eq. (1) can be rewritten in the following form:

Dg
q4W ðX ;Y Þ

qX 4
þ 2l2Df

q4W ðX ;Y Þ

qX 2qY 2
þ l4

q4W ðX ;Y Þ

qY 4

þ 4 lDa
q4W ðX ;Y Þ

qX 3qY
þ l3Db

q4W ðX ;Y Þ

qXqY 3

� �
� O2W ðX ;Y Þ ¼ 0. (4)

Here, the natural frequency parameter is O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D22

p
. For specially orthotropic plates (SOP) and

isotropic plates (IP), Eq. (4) can be simplified based on the following two features:
�
 For the SOP: The composite is symmetrically laminated and has only plies in the 01 and 901 directions;
therefore, Dg 6¼Df and Da ¼ Db ¼ 0 (i.e., D16 ¼ D26 ¼ 0).

�
 For the isotropic plates (IP): The rigidities Dg ¼ Df ¼ 1 and Da ¼ Db ¼ 0 (i.e., D11 ¼ D22 ¼ D ¼ Eh3=

12ð1� u2Þ and D16 ¼ D26 ¼ 0).

For fully simply supported SOP, natural frequency parameter Op,q is analytically given by [33],

Op;q ¼ op;qa2

ffiffiffiffiffiffiffiffi
r0h

D22

s
¼ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4Dg þ 2p2q2l2Df þ q4l4

q
p; q ¼ 1; 2; 3; . . . . (5)

3. Discrete singular convolution (DSC)

3.1. Theory of the DSC

Singular convolution is defined by the theory of distributions. Let T be a distribution and Z(t) be an element
of the space of test functions. Then, a singular convolution can be given by [22]

F ðtÞ ¼ ðTnZÞðtÞ ¼
Z 1
�1

Tðt� xÞZðxÞdx. (6)

Here, the sign � is the convolution operator, F(t) is the convolution of Z and T, T(t�x) is the singular kernel of
the convolution integral. Depending on the form of the kernel T, singular convolution can be applied to
different science and engineering problems. Delta kernel is an interpolation function essential for the
numerical solution of partial differential equations:

TðxÞ ¼ dn
ðxÞ n ¼ 0; 1; 2; . . . (7)

Delta kernels given in Eq. (7) are proper for use in vibration analysis. However, these kernels are singular;
thus, they cannot be digitized directly in a computer. In order to avoid this problem, sequences of
approximations Ta of the distributions T can be constructed such that Ta converge to T:

lim
a!a0

TaðxÞ ! TðxÞ, (8)

where a0 is a generalized limit. With a good approximation, a Discrete Singular Convolution (DSC) can be
determined as

F aðxÞ ¼
X

k

Taðx� xkÞf ðxkÞ: (9)

Here, Fa(x) is an approximation to F(x) and {xk} is an approximate set of discrete points on which the DSC in
Eq. (9) is well defined. f(x) is used here as the test function replacing the original test function Z(x). A sequence
of approximation can be improved by a regularizer in order to increase the regularity of convolution kernels.
The gaussian regularizer is a typical delta regularizer and it is in the form of

RsðxÞ ¼ e�x2=2s2 , (10)
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where s is the standard deviation. Delta kernel with sampling parameter a approximately in the form

Ta ¼
sin ax

px
, (11)

is known as the Shannon father wavelet (scaling function). In vibration analysis, a discretized form of Eq. (11),
which is sampled by Nyquist frequency (a ¼ p/D, D is the grid spacing) and improved by the Gaussian
regularizer, can be chosen as the kernel function of the DSC [22]:

dp=D;sðx� xkÞ ¼
sin ½p=Dðx� xkÞ�

p=Dðx� xkÞ
exp ð�ðx� xkÞ

2=2s2Þ. (12)

Here, D is determined by considering the required precision of the analysis. The DSC expression in Eq. (9) can
be rewritten using the Regularized Shannon Delta Kernel (RSDK) given in Eq. (12):

f ðxÞ �
X1

k¼�1

sin ½p=Dðx� xkÞ�

p=Dðx� xkÞ
exp ð�ðx� xkÞ

2=2s2Þf ðxkÞ. (13)

As seen in Eq. (13), since the DSC approach is defined in an infinite region, the kernels must be bounded in a
sufficient computational domain for numerical determination. This can be practically achieved by a spatial
truncation of the convolution kernel. A translationally invariant symmetric truncation algorithm can be used
in an efficient bandwidth (2M+1) as follows:

f ðnÞðxmÞ �
XM

k¼�M

dðnÞp=D;sðxm � xkÞf ðxkÞ. (14)

Here, xm is the specific central point considered and dðnÞp=D;sðxÞ is the nth derivative of d(x) given in Eq. (12) with
respect to x. As an example, the second order derivative of the RSDK can be analytically given by

dð2Þp=D;sðxm � xkÞ ¼ �
ðp=DÞ sin ½p=Dðxm � xkÞ�

ðxm � xkÞ
þ 2

cos ½p=Dðxm � xkÞ�

ðxm � xkÞ
2

� �
exp ð�ðxm � xkÞ

2=2s2Þ

� 2
cos ½p=Dðxm � xkÞ�

s2
� 2

sin ½p=Dðxm � xkÞ�

p=Dðxm � xkÞ
3

 !
exp ð�ðxm � xkÞ

2=2s2Þ

þ
sin ½p=Dðxm � xkÞ�

p=Dðxm � xkÞs2
þ

sin ½p=Dðxm � xkÞ�

p=Ds4
ðxm � xkÞ

� �
exp ð�ðxm � xkÞ

2=2s2Þ. (15)

Specifically, the value of the kernel at xm ¼ xk is

lim
xk!xm

dð2Þp=D;sðxm � xkÞ ! dð2Þp=D;sð0Þ ¼ �
1

s2
�

p2

3D2
. (16)

3.2. DSC discretization of operator

In the DSC implementation to any differential equation, a linear DSC operator L having a differential part
D and a function part F is written as

L ¼ Dþ F . (17)

It is essential to define a grid representation so that the function part of the operator is diagonal. Hence, the
grid discretization is simply given by a direct interpolation:

F ðxÞ ! F ðxkÞ d
ð0Þ
p=D;sðxm � xkÞ, (18)



ARTICLE IN PRESS

Fig. 1. Computational domain representation for a beam structure in DSC algorithm.

A. Sec-gin, A.S. Sarıgül / Journal of Sound and Vibration 315 (2008) 197–211 201
where dð0Þp=D;sðxm � xkÞ is the RSDK given in Eq. (12). The differential part of the operator on the coordinate
grid is then represented by functional derivatives:

D ¼
X

n

dnðxÞ
dn

dxn

!
X

n

dnðxmÞd
ðnÞ

p=D;sðxm � xkÞ, (19)

where dn is a coefficient. Finally, the linear DSC operator L can be rewritten by summing Eqs. (18) and (19);

L ¼ ðxm � xkÞ ¼
X

n

dnðxmÞd
ðnÞ

p=D;sðxm � xkÞ þ F ðxkÞd
ð0Þ
p=D;sðxm � xkÞ; na0. (20)

3.3. Grid discretization in the DSC algorithm

A thin beam having length a is illustrated in Fig. 1 as an example of DSC grid discretization. N is the
number of structure points (x0; x1; . . . ;xN�1) with uniform interval D ¼ a=ðN � 1Þ. The function derivatives on
these points are approximated by a linear summation of function values on the 2M+1 points centered at those
points. Since the summation requires function values at the points outside the structural domain, M auxiliary
points can be fictitiously positioned on both the left and right sides of the structural domain. For an effective
algorithm, three indices, i ¼ 0; 1; 2; . . . ;N � 1, k ¼ �M ; . . . ; 0; . . . ;M and j ¼ �M; . . . ; 0; . . . ;N � 1þM,
may be determined with the condition that NXM þ 1. Regarding these determinations, DSC given in Eq. (14)
can be rewritten as

W ðnÞðxiÞ �
XM

k¼�M

dðnÞp=D;sðxi � xkÞW ðxiþkÞ. (21)

By using translationally invariant algorithm, kD ¼ ðx0 � xkÞ ¼ ðx1 � xkÞ ¼ � � � ¼ ðxN�1 � xkÞ, a set of
(2M+1) coefficients for 8i 2 0; 1; . . . ;N � 1f g points is obtained:

fdðnÞ�M ; . . . ; d
ðnÞ
0 ; . . . ; d

ðnÞ
M g ¼ fd

ðnÞ

p=D;sð�MDÞ; . . . ; dðnÞp=D;sð0Þ; . . . ; d
ðnÞ

p=D;sðMDÞg. (22)

Thus, the DSC reduces to

W ðnÞðxiÞ �
XM

k¼�M

dðnÞp=D;sðkDÞW ðxiþkÞ. (23)

Similar representations and notations can be properly defined for other structures such as plates and acoustic
enclosures.
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4. Implementation of the DSC approach

4.1. Implementation of the DSC to symmetrically laminated plates

Applying linear DSC operator L, which performs the DSC approach in Eq. (23), to Eq. (4), one can
obtain a discretized governing equation of symmetrically laminated composite plates in a non-dimensional
form:

Dg

XM
k¼�M

dð4Þp=D;sðkDÞW ðX iþk;Y Þ

þ 2l2Df

XM
k¼�M

dð2Þp=D;sðkDÞW ðX iþk;Y Þ
XM

k¼�M

dð2Þp=D;sðkDÞW ðX ;Y iþkÞ

 !

þ l4
XM

k¼�M

dð4Þp=D;sðkDÞW ðX ;Y iþkÞ

þ 4lDa

XM
k¼�M

dð3Þp=D;sðkDÞW ðX iþk;Y Þ
XM

k¼�M

dð1Þp=D;sðkDÞW ðX ;Y iþkÞ

 !

þ 4l3Db

XM
k¼�M

dð1Þp=D;sðkDÞW ðX iþk;Y Þ
XM

k¼�M

dð3Þp=D;sðkDÞW ðX ;Y iþkÞ

 !
¼ X2WðX ;Y Þ. (24)

The DSC full matrix: DSC kernels in Eq. (24) can be written in a DSC matrix form as

WðnÞri;j ¼
dðnÞp=D;sððj � iÞDÞ; if �Mpj � ipM ;

0; otherwise:

(
(25)

Here, WðnÞr is N � ð2M þNÞ DSC full matrix and r is the direction of differentiation (r ¼ x or y for plates).
Boundary condition implementation: The numerical scheme of the DSC is completed by implementing the

boundary conditions to Eq. (24). For simply supported and clamped boundary conditions, an assumption on
the relation between auxiliary points and structure points can be made by determining an arbitrary index
S ¼ 1; . . . ;M and the coefficients Ar, S and Br, S:

For left (r ¼ x) and top (r ¼ y) boundaries

W ðr�SÞ �W ðr0Þ ¼ Ar;S½W ðrSÞ �W ðr0Þ�. (26)

In a similar way, for right (r ¼ x) and bottom (r ¼ y) boundaries

W ðrN�1þSÞ �W ðrN�1Þ ¼ Br;S½W ðrN�1�SÞ �W ðrN�1Þ�. (27)

Any auxiliary point can be written in terms of structure points using one of the relations in Eqs. (26) and
(27). Then using the DSC expression in Eq. (23), one can obtain the coefficients as Ar;S ¼ Br;S ¼ �1 for SSSS
and Ar;S ¼ Br;S ¼ 1 for CCCC plates, for each S value. As these boundary conditions are applied, a vector for
a discretized plate shown in Fig. 2 is formed:

W ¼ fW 0;0; . . . ;W 0;N�1;W 1;0; . . . ;W 1;N�1; . . . ; . . . ;W N�1;0; . . . ;W N�1;N�1g
T. (28)

Finally, after implementation of displacement boundary conditions W ðr0Þ ¼W ðrN�1Þ ¼ 0, Eq. (24) can be
reconstructed by DSC matrices as an eigenvalue equation for symmetrically laminated composite plates:

fDgðC
ð4Þ
x � IyÞ þ 2l2DfðC

ð2Þ
x � Cð2Þy Þ þ l4ðIx � Cð4Þy Þ

þ4lDaðC
ð3Þ
x � Cð1Þy Þ þ 4l3DbðC

ð1Þ
x � Cð3Þy ÞgW ¼ X2W;

(29)

where CðnÞr is the DSC characteristic matrix, Ir is the identity matrix, X is the diagonal natural frequency
parameter matrix,W is the displacement vector and the symbol � denotes tensorial product. For square plates
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l ¼ 1; Ix ¼ Iy. A characteristic matrix is obtained by applying specific boundary conditions to the DSC full
matrix WðnÞr N � ð2M þNÞ defined in Eq. (25). Afterwards, X and W can be obtained from Eq. (29) using a
standard solver.
Fig. 2. DSC grid representation of a square plate (N2: number of grid points).

Table 1

Natural frequency parameters of some simply supported structures

Isotropic beam (SS) Isotropic square plate (SSSS) Specially orthotropic square plate (SSSS)

Beam length: a ¼ p (m) l ¼ 1, Dg ¼ Df ¼ 1, Da ¼ Db ¼ 0 l ¼ 1, Dg ¼ 10, Df ¼ 1, Da ¼ Db ¼ 0

Natural frequency parameter: Natural frequency parameter: Natural frequency parameter:

O ¼ o

ffiffiffiffiffiffiffi
rA

EI

r
O=p2 ¼ o

a2

p2

ffiffiffiffiffiffiffiffi
r0h

D

r
O=p2 ¼ o

a2

p2

ffiffiffiffiffiffiffiffi
r0h

D22

r

Mode

number

DSC Exact

[34]

Mode

number

(p, q)

DSC Exact

[33]

Mode

number

(p, q)

DSC Exact

[33]

N ¼ 11 N ¼ 21 N ¼ 31 N ¼ 11� 11 N ¼ 21� 21 N ¼ 11� 11 N ¼ 21� 21

1 1.0050 1.0000 1.0000 1 (1,1) 2.0051 2.0000 2 (1,1) 3.6209 3.6056 3.6056

2 3.9994 4.0000 4.0000 4 (1,2) 5.0006 5.0000 5 (1,2) 5.8392 5.8310 5.8310

3 9.0095 9.0000 9.0000 9 (2,1) 5.0006 5.0000 5 (1,3) 10.4535 10.4403 10.4403

4 16.0764 16.0000 16.0000 16 (2,2) 7.9993 8.0000 8 (2,1) 12.9986 13.0000 13.0000

5 25.4813 25.0000 25.0000 25 (1,3) 10.0092 10.0000 10 (2,2) 14.4204 14.4222 14.4222

6 38.0834 36.0000 36.0000 36 (3,1) 10.0092 10.0000 10 (1,4) 17.3370 17.2627 17.2627

7 55.0104 49.0000 49.0000 49 (2,3) 13.0066 13.0000 13 (2,3) 17.6954 17.6918 17.6918

8 75.1793 64.0000 64.0000 64 (3,2) 13.0066 13.0000 13 (2,4) 23.3768 23.3238 23.3238

9 92.8390 81.0002 81.0000 81 (1,4) 17.0728 17.0000 17 (1,5) 26.6382 26.1725 26.1725

10 – 100.0022 100.0000 100 (4,1) 17.0728 17.0000 17 (3,1) 28.8224 28.7924 28.7924

11 – 121.0168 121.0000 121 (3,3) 18.0102 18.0000 18 (2,5) 29.9953 29.9666 29.9666

12 – 144.1010 144.0000 144 (2,4) 20.0628 20.0000 20 (3,2) 31.7809 31.3847 31.3847

13 – 169.4850 169.0000 169 (4,2) 20.0628 20.0000 20 (3,3) 32.4794 32.4500 32.4500

14 – 197.8500 196.0000 196 (3,4) 25.0560 25.0000 25 (1,6) 36.8558 36.7967 36.7967

15 – 230.5612 225.0000 225 (4,3) 25.0560 25.0000 25 (3,4) 39.1635 37.1214 37.1214

16 – 269.0423 256.0000 256 (1,5) 26.4671 26.0000 26 (2,6) 43.6304 41.7612 41.7612

17 – 312.5090 289.0000 289 (5,1) 26.4671 26.0000 26 (3,5) 43.7355 43.4166 43.4166

18 – 355.4072 324.0000 324 (2,5) 29.4290 29.0000 29 (1,7) 51.1619 50.0899 50.0899

19 – 387.8306 361.0000 361 (5,2) 29.4290 29.0000 29 (2,7) 52.2357 50.9215 50.9215

20 – – 400.0000 400 (4,4) 32.0854 32.0000 32 (3,6) 54.0563 52.0000 52.0000
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4.2. Convergence and comparison study

4.2.1. Verification of natural frequency parameters

In order to validate the DSC code, firstly, the natural frequency parameters of simply supported isotropic
thin beams, plates (IP) and specially orthotropic thin plates (SOP) were computed. These frequency
parameters are compared with the exact results in Table 1. In all analyses performed in this study, thin plates
were assumed to be square. Here, natural frequency parameters of the plates were defined as O/p2 for
numerical facility. It can be seen from Table 1 that as the number of grid points (N) increases, the discrepancy
Table 2

Natural frequency parameters of fully clamped (CCCC) specially orthotropic plate (SOP) (l ¼ 1, DSC: N ¼ 21� 21,

O=p2 ¼ ðoa2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D22

p
, Dg ¼ 10, Df ¼ 1, Da ¼ Db ¼ 0)

Specially orthotropic square plate (CCCC)

Mode number (p, q) Present: DSC Whitney [33]

(1,1) 7.7199 7.7221

(1,2) 10.0990 10.102

(1,3) 15.0440 15.0475

(2,1) 20.1740 20.1835

(2,2) 21.7380 21.7402

(1,4) 22.4670 22.4673

Table 3

Natural frequency parameters b1 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;1

p
of fully simply supported (SSSS) square three-ply laminates with several orientations

(l ¼ 1, DSC: N ¼ 21� 21)

Three-ply Resource Mode Sequence Number

Ply angle 1 2 3 4 5 6

SSSS:

(01, 01, 01) Exact [33] (CLPT: SOP) 15.171 33.248 44.387 60.682 64.457 90.145

Present: DSC 15.171 33.248 44.387 60.682 64.457 90.145

Dai et al. [19] (CLPT) 15.17 33.32 44.51 60.78 64.79 90.42

Dai et al. [19] (TSDT) 15.22 33.76 44.79 61.11 66.76 91.69

Chow et al. [8] (CLPT) 15.19 33.31 44.52 60.79 64.55 90.31

Leissa and Narita [4] (CLPT) 15.19 33.30 44.42 60.78 64.53 90.29

(151, �151, 151) Present: DSC 15.469 34.153 43.879 60.954 66.635 91.393

Dai et al. [19] (CLPT) 15.40 34.12 43.96 60.91 66.92 91.76

Dai et al. [19] (TSDT) 15.45 34.54 44.25 61.36 68.68 92.99

Chow et al. [8] (CLPT) 15.37 34.03 43.93 60.80 66.56 91.40

Leissa and Narita [4] (CLPT) 15.43 34.09 43.80 60.85 66.67 91.40

(301, �301, 301) Present: DSC 16.058 36.060 42.743 61.757 71.849 85.780

Dai et al. [19] (CLPT) 15.87 35.92 42.70 61.53 71.10 86.31

Dai et al. [19] (TSDT) 15.92 36.28 43.00 62.05 73.55 87.37

Chow et al. [8] (CLPT) 15.86 35.77 42.48 61.27 71.41 85.67

Leissa and Narita [4] (CLPT) 15.90 35.86 42.62 61.45 71.71 85.72

(451, �451, 451) Present: DSC 16.348 37.146 42.033 62.234 77.213 80.130

Dai et al. [19] (CLPT) 16.10 37.00 41.89 61.93 77.99 80.11

Dai et al. [19] (TSDT) 16.15 37.33 42.20 62.45 78.96 81.55

Chow et al. [8] (CLPT) 16.08 36.83 41.67 61.65 76.76 79.74

Leissa and Narita [4] (CLPT) 16.14 36.93 41.81 61.85 77.04 80.00
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between the DSC predictions and exact results decreases. For isotropic beams, even with low grid numbers
such as N ¼ 11, the first few natural frequency parameters are accurately predicted by DSC. For N ¼ 31, the
exact results are obtained up to the computed one ten-thousandth digits for the considered number of modes.
Table 1 also shows an excellent prediction of frequency parameters for both IP and SOP by DSC, especially
for N ¼ 21� 21 grid points. In addition, for fully clamped SOP, the first six natural frequency parameters
Table 4

Natural frequency parameters b1 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;1

p
of fully clamped (CCCC) square three-ply laminates with several orientations (l ¼ 1,

DSC: N ¼ 21� 21)

Three-ply Resource Mode sequence number

Ply angle 1 2 3 4 5 6

CCCC:

(01, 01, 01) Present: DSC 29.087 50.792 67.279 85.629 87.112 118.50

Dai et al. [19] (CLPT) 29.27 51.21 67.94 86.25 87.97 119.3

Dai et al. [19] (TSDT) 30.02 54.68 70.41 89.36 92.58 123.6

Chow et al. [8] (CLPT) 29.13 50.82 67.29 85.67 87.14 118.6

(151, �151, 151) Present: DSC 28.897 51.405 65.911 84.515 89.712 119.21

Dai et al. [19] (CLPT) 29.07 51.83 66.55 85.17 90.56 120.0

Dai et al. [19] (TSDT) 29.85 55.25 69.14 88.53 94.92 124.3

Chow et al. [8] (CLPT) 28.92 51.43 65.92 84.55 89.76 119.3

(301, �301, 301) Present: DSC 28.522 53.124 62.683 83.821 95.158 114.13

Dai et al. [19] (CLPT) 28.69 53.57 63.26 84.43 96.15 115.5

Dai et al. [19] (TSDT) 29.51 56.84 66.17 87.83 100.5 118.9

Chow et al. [8] (CLPT) 28.55 53.15 62.71 83.83 95.21 114.1

(451, �451, 451) Present: DSC 28.337 54.623 60.430 83.658 101.94 105.60

Dai et al. [19] (CLPT) 28.50 55.11 60.94 84.25 103.2 106.7

Dai et al. [19] (TSDT) 29.34 58.19 64.14 87.67 107.4 110.6

Chow et al. [8] (CLPT) 28.38 54.65 60.45 83.65 102.0 105.6

Table 5

Natural frequency parameters b1 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;1

p
of simply supported-clamped (SCSC) square three-ply laminates with several

orientations (l ¼ 1, DSC: N ¼ 21� 21)

Three-ply Resource Mode sequence number

Ply angle 1 2 3 4 5 6

SCSC:

(01, 01, 01) Present: DSC 20.402 45.638 46.998 69.434 83.677 95.247

Dai et al. [19] (CLPT) 20.48 46.04 47.15 70.12 84.54 95.85

Dai et al. [19] (TSDT) 21.08 47.73 49.64 72.05 89.25 96.97

(151, �151, 151) Present: DSC 20.791 45.514 47.739 70.200 85.623 93.210

Dai et al. [19] (CLPT) 20.85 45.56 48.14 70.66 86.47 94.00

Dai et al. [19] (TSDT) 21.42 46.78 51.04 72.63 91.01 95.04

(301, �301, 301) Present: DSC 21.786 44.476 50.622 71.73 87.959 91.845

Dai et al. [19] (CLPT) 21.84 44.42 51.03 71.89 88.96 92.82

Dai et al. [19] (TSDT) 22.35 45.31 54.09 73.93 90.07 96.85

(451, �451, 451) Present: DSC 23.059 43.047 54.979 72.655 82.688 101.21

Dai et al. [19] (CLPT) 23.15 43.07 55.44 72.78 83.90 102.26

Dai et al. [19] (TSDT) 23.63 43.84 58.36 74.82 85.04 106.01
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Table 6

Natural frequency parameters b1 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;1

p
of fully simply supported (SSSS) and clamped (CCCC) square four-ply laminates with

several orientations (l ¼ 1, DSC: N ¼ 21� 21)

Four-ply Resource Mode sequence number

Ply angle 1 2 3 4 5 6

SSSS:

(01, 01, 01 , 01) Exact [33] (CLPT: SOP) 15.171 33.248 44.387 60.682 64.457 90.145

Present: DSC 15.171 33.248 44.387 60.682 64.457 90.145

Chow et al. [8] (CLPT) 15.19 33.31 44.52 60.78 64.55 90.31

Leissa and Narita [4] (CLPT) 15.19 33.30 44.42 60.77 64.53 90.29

(151, �151, �151, 151) Present: DSC 15.490 34.235 43.904 61.333 66.520 91.446

Chow et al. [8] (CLPT) 15.40 34.15 43.84 61.23 66.48 91.47

Leissa and Narita [4] (CLPT) 15.47 34.21 43.91 61.28 66.57 91.47

(301, �301, �301, 301) Present: DSC 16.117 36.426 42.696 62.764 71.737 85.828

Chow et al. [8] (CLPT) 15.94 36.23 42.52 62.46 71.45 85.79

Leissa and Narita [4] (CLPT) 16.02 36.30 42.62 62.57 71.68 85.81

(451, �451, �451 , 451) Present: DSC 16.424 37.837 41.766 63.540 77.644 79.646

Chow et al. [8] (CLPT) 16.17 37.62 41.52 63.15 77.33 79.40

Leissa and Narita [4] (CLPT) 16.29 37.71 41.63 63.29 77.56 79.60

CCCC:

(01, 01, 01 , 01) Present: DSC 29.087 50.792 67.279 85.629 87.112 118.50

Chow et al. [8] (CLPT) 29.13 50.82 67.29 85.67 87.14 118.6

(151, �151, �151, 151) Present: DSC 28.940 51.528 65.959 85.07 89.53 119.88

Chow et al. [8] (CLPT) 28.98 51.56 65.97 85.11 89.57 119.9

(301, �301, �301, 301) Present: DSC 28.648 53.597 62.720 85.093 95.088 114.26

Chow et al. [8] (CLPT) 28.69 53.62 62.74 85.09 95.15 114.3

(451, �451, �451 , 451) Present: DSC 28.503 55.534 60.197 85.254 102.52 105.18

Chow et al. [8] (CLPT) 28.53 55.56 60.22 85.25 102.6 105.2

Table 7

Natural frequency parameters b1 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;1

p
of fully simply supported (SSSS) and clamped (CCCC) square five-ply laminates with

several orientations (l ¼ 1, DSC: N ¼ 21� 21)

Five-ply Resource Mode sequence number

Ply angle 1 2 3 4 5 6

SSSS:

(01, 01, 01 , 01 ,01) Exact [33] (CLPT: SOP) 15.171 33.248 44.387 60.682 64.457 90.145

Present: DSC 15.171 33.248 44.387 60.682 64.457 90.145

Chow et al. [8] (CLPT) 15.19 33.31 44.52 60.78 64.55 90.31

Leissa and Narita [4] (CLPT) 15.19 33.30 44.42 60.77 64.53 90.29

(151, �151, 151, �151, 151) Present: DSC 15.506 34.296 43.922 61.630 66.419 91.485

Chow et al. [8] (CLPT) 15.46 34.24 43.88 61.59 66.42 91.52

Leissa and Narita [4] (CLPT) 15.50 34.30 43.93 61.62 66.48 91.51

(301, �301, 301, �301, 301) Present: DSC 16.161 36.705 42.652 63.561 71.598 85.864

Chow et al. [8] (CLPT) 15.98 36.58 42.53 63.37 71.43 85.86

Leissa and Narita [4] (CLPT) 16.10 36.64 42.62 63.45 71.60 85.88

(451, �451, 451, �451, 451) Present: DSC 16.480 38.436 41.478 64.563 77.958 79.223

Chow et al. [8] (CLPT) 16.29 38.30 41.32 64.35 77.77 79.09

Leissa and Narita [4] (CLPT) 16.40 38.37 41.40 64.41 77.94 79.23
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Table 8

Natural frequency parameters b2 ¼ oa2=p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;2

p
of fully simply supported (SSSS) and fully clamped (CCCC) square three-ply

laminates with (01, 901, 01) orientation (l ¼ 1, DSC: N ¼ 21� 21)

Three-ply (01, 901, 01) Mode sequence number

Resource 1 2 3 4 5 6 7 8

SSSS:

Exact [33] (CLPT: SOP) 6.6254 9.4473 16.2056 25.1181 26.5017 26.6585 30.3175 37.7892

Present: DSC 6.6254 9.4473 16.2056 25.1181 26.5017 26.6585 30.3175 37.7892

Liew [6] 6.6252 9.4470 16.2051 25.1146 26.4982 26.6572 30.3139 37.7854

Ferreira and Fasshauer [20] 6.6180 9.4368 16.2192 25.1131 26.4938 26.6667 30.2983 37.7850

Lanhe et al. [16] 6.632 9.464 16.364 25.325 26.886 – – –

CCCC:

Present: DSC 14.6692 17.6191 24.5235 35.5614 39.1818 40.7945 44.8174 50.3613

Liew [6] 14.6655 17.6138 24.5114 35.5318 39.1572 40.7685 44.7865 50.3226

Ferreira and Fasshauer [20] 14.8138 17.6181 24.1145 36.0900 39.0170 40.8323 44.9457 49.0715

Lanhe et al. [16] 14.674 17.668 24.594 35.897 39.625 – – –

Table 7 (continued )

Five-ply Resource Mode sequence number

Ply angle 1 2 3 4 5 6

CCCC:

(01, 01, 01 , 01 ,01) Present: DSC 29.087 50.792 67.279 85.629 87.112 118.50

Chow et al. [8] (CLPT) 29.13 50.82 67.29 85.67 87.14 118.6

(151, �151, 151, �151, 151) Present: DSC 28.972 51.620 65.995 85.527 89.350 120.40

Chow et al. [8] (CLPT) 29.00 51.65 66.01 85.55 89.40 120.5

(301, �301, 301, �301, 301) Present: DSC 28.740 53.951 62.741 86.097 94.968 114.35

Chow et al. [8] (CLPT) 28.78 53.98 62.76 86.09 95.04 114.4

(451, �451, 451, �451, 451) Present: DSC 28.624 56.308 59.917 86.486 102.95 104.81

Chow et al. [8] (CLPT) 28.68 56.34 59.94 86.48 103.0 104.9
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obtained by the DSC and by an approximate formula given by Whitney [33] are compared in Table 2. As seen
from Table 2, the result couples are very close to each other.

Secondly, the natural frequency parameters of three-ply laminates predicted by the DSC approach are
compared with those of some selected studies [4,8,19]: Leissa and Narita [4] use the Ritz method, Chow et al.
[8] utilize the Rayleigh–Ritz approach whereas Dai et al. [19] introduce a mesh-free technique; and present
results from classical laminated plate theory (CLPT) and Reddy’s third-order shear deformation theory
(TSDT). In this comparison, the natural frequency parameter is determined as b1 ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;1

p
by means

of an arbitrary rigidity expression (i.e., D0;1 ¼ E1h
3=ð1� n12n21Þ). The following plate parameters are adapted

to the comparison: E1=E2 ¼ 2:45, G12 ¼ 0:48E2, u12 ¼ 0:23, u21 ¼ 0:0939, r ¼ 8000 kgm�3, h ¼ 0:06m, h=a ¼

0:006 (i.e., a typical thin plate). Here, Ei, Gi,j and ni,j are elasticity modulus, shear modulus and Poisson’s ratio,
respectively. Subscripts i and j denote principal fiber directions. Table 3 gives frequency parameters of the
plates with fully simply supported (SSSS), Table 4 with fully clamped (CCCC) and Table 5 with simply
supported-clamped (SCSC) boundary conditions. Tabulated frequency parameters computed by the DSC are
in good agreement with those of the compared studies.
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Thirdly, the natural frequency parameters of four- and five-ply laminates are compared in Tables 6 and 7,
respectively, with those of Leissa and Narita [4] and Chow et al. [8]. Here, the frequency parameter and plate
parameters are the same as given in the second case. These DSC predictions also exhibit very good agreement
with the compared results.

Finally, another comparison is given for (01, 901, 01) fiber orientation. Here the reference studies are by
Liew [6] using the p-Ritz approach, Ferreira and Fasshauer [20] introducing the radial basis function-
pseudospectral approach and Lanhe et al. [16] utilizing the moving least squares-differential quadrature
method. In this case, the natural frequency parameter is determined as b2 ¼ oa2=p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;2

p
by

means of another arbitrary rigidity expression (i.e., D0;2 ¼ E2h
3=ð1� n12n21Þ). The plate parameters are

E1=E2 ¼ 40, G12 ¼ 0:6E2, u12 ¼ 0:25, u21 ¼ 0:00625, h ¼ 0:001m, h=a ¼ 0:001. DSC solutions for fully
simply supported (SSSS) and fully clamped (CCCC) plates are very close to the compared results as shown in
Table 8.

Moreover, as seen from Tables 3, 6, 7 and 8, in the given number of digits, DSC predictions completely
match with the exact results of simply supported laminates orientated to become specially orthotropic. This
implies the superiority of the DSC compared to the other techniques. It is known that the thin plate theory is
not very accurate in the vibration analysis of laminated plates. However, the presented DSC results based on
CLPT are sensitive because of the sufficiently small thickness-to-length ratio of the considered plates, as seen
in the same predictions of exact CLPT and SOP cases.
4.2.2. Verification of mode shapes

Fig. 3 displays well-known first four mode shapes of a simply supported beam obtained by the DSC
approach using N ¼ 31 grid points. In Fig. 4, the first four mode shapes of SOP by DSC are given together
with symbolic nodal line representation by Whitney [33]. For the verification of mode shapes of laminated
plates, five-ply fully simply supported composite plates having fy;�y; y;�y; yg sequence with four orientation
angles y ¼ 0	; 15	; 30	; 45	 are considered. In Fig. 5, the first eight mode shapes (n ¼ 1, 2, y, 8) corresponding
to the first eight natural frequency parameters (b1 ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;1

p
) tabulated in Table 9 are compared with

those of Chow et al. [8]. Here the material properties are E1=E2 ¼ 15:4, G12 ¼ 0:79E2, u12 ¼ 0:3, u21 ¼ 0:0195.
These consistent mode shapes simply verify the accuracy of the DSC.
Fig. 3. The first four mode shapes of simply supported isotropic thin beam predicted by DSC (N ¼ 31).



ARTICLE IN PRESS

Fig. 4. The first four mode shapes of simply supported specially orthotropic thin plate: (a) Exact [33], (b) DSC (N ¼ 21� 21).
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5. Conclusions

Thin plates made of composite materials present many advantages in the use of several industrial
applications. Although a number of commercial codes based on conventional methods are used in the
vibration analysis of composite structural elements, researchers have been working to develop more accurate,
more effective, easy to use, operational frequency-independent new approaches. In this regard, this study
proves the applicability of the DSC approach to the free vibration analysis of composite plates. The paper
provides open algorithms of the DSC together with some key points in the implementation procedure. Very
accurate predictions have been obtained for both isotropic and orthotropic plates by using small grid
numbers, leading to very small computation time and memory. Moreover, very good agreement between the
DSC and other approaches used in the selected references has been obtained for symmetrically laminated
composite plates. Perfect match between the DSC and exact solutions promises that the DSC approach can be
reliably used in the vibration analysis of composite plates, which have no analytical solutions.
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Table 9

Natural frequency parameters b1 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h=D0;1

p
corresponding to the first eight mode shapes of fully simply supported (SSSS) square

five-ply laminates with several orientations (l ¼ 1, DSC: N ¼ 21� 21)

Five-ply Resource Mode sequence number

Ply angle 1 2 3 4 5 6 7 8

(01, 01, 01 , 01 , 01) Present DSC 11.29 17.13 28.68 40.74 45.15 45.78 54.06 68.14

Chow et al. [8] 11.30 17.13 28.70 40.77 45.18 46.23 54.98 69.64

(151, �151, 151, �151, 151) Present DSC 12.01 20.07 33.38 39.78 47.80 51.75 61.44 74.27

Chow et al. [8] 11.82 19.76 32.93 39.53 47.42 52.73 61.11 74.08

(301, �301, 301, �301, 301) Present DSC 13.40 25.83 37.41 43.60 53.80 66.50 76.06 77.23

Chow et al. [8] 12.98 25.21 36.97 42.65 52.83 66.48 75.76 77.65

(451, �451, 451, �451, 451) Present DSC 14.06 29.38 35.36 49.94 60.22 66.19 75.31 89.17

Chow et al. [8] 13.61 28.75 34.68 48.90 59.25 65.34 74.28 88.86

Fig. 5. The first eight mode shapes of simply supported five-ply composite plates: (a) Chow et al. [8], (b) DSC (N ¼ 21� 21) (n: mode

sequence number, y: orientation angle).
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